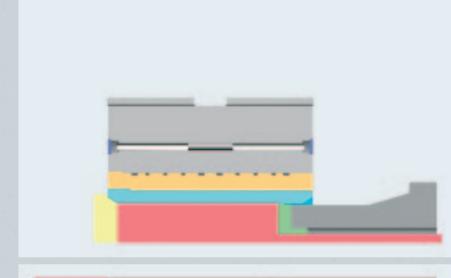


TOOLINGS FOR EXTRUSION PRESSES




For more than 100 years tool steels and their applications have shaped our company. Experience and the most advanced technological equipment from primary steel melting to the ready-to-use toolings is the basis of the products of KIND & CO which are well excepted all over the world.

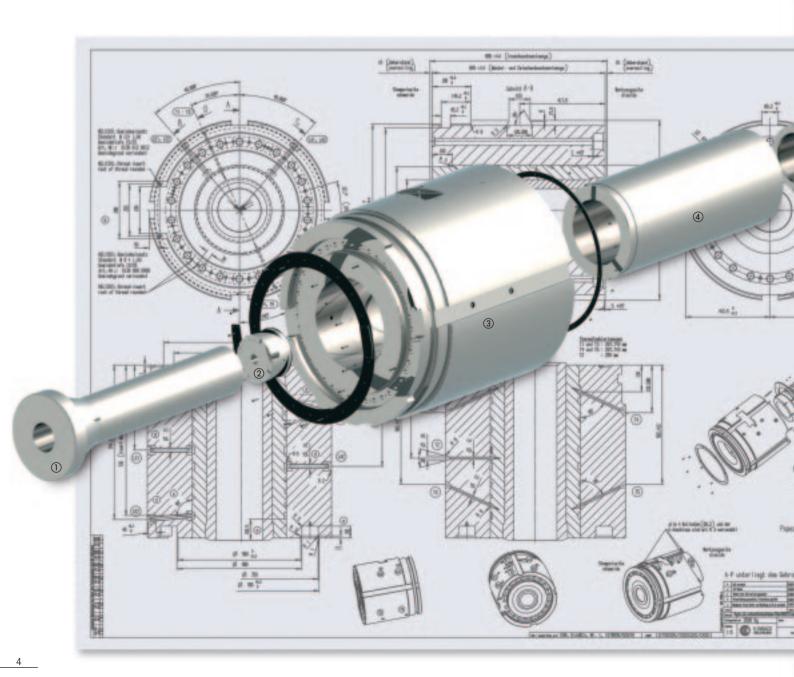
SERVICE FROM ONE SINGLE SOURCE

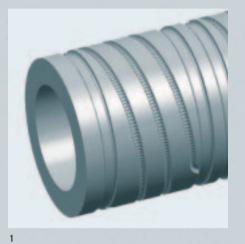
Todays economic importance of the extrusion technology was furthered not only by technical developments on the equipment side but also by constant development on the tooling side. To us, the growing requirements of our customers provide the impetus for our work. The purpose of this documentation is to serve as a brief guide and to give a summary of recent developments of toolings for extrusions presses.

INDIRECT AND DIRECT EXTRUSION

Indirect extrusion

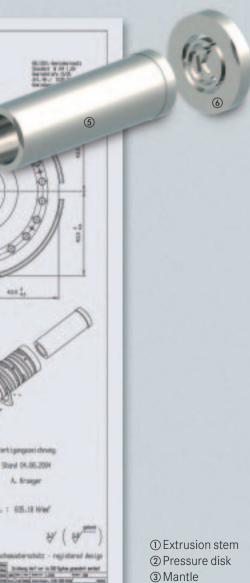
Indirect extrusion has meanwhile found acceptance for producing wire, rods, and sections from brass. Also for extruding high-alloyed aluminium indirect extrusion is often the preferred solution. Compared with direct extrusion, the special material flow of indirect extrusion facilitates higher extrusion rates. No friction between billet and inner liner and therefore no friction heat can occur, results in homogeneous material properties along the entire length of the extruded strand.

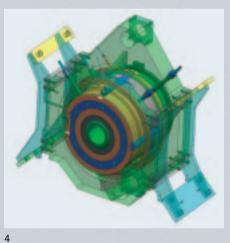

Direct extrusion

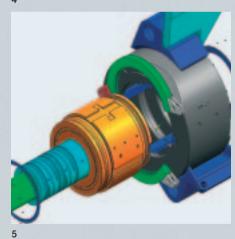

Preferred application for manufacturing copper products using the underwater extrusion method to achieve low-oxide surfaces. Large section circumferences and asymmetrical hollow shapes can be easily direct extrude for the aluminium industry.

FROM DESIGN TO PROJECT INTEGRATION

Based on a set of requirements defined by the plant operator or manufacturer, we conceive ultra modern tool packages such as containers, stems, mandrels and dummy blocks. The new designs are not only based on theoretical considerations but, due to years of maintenance and repair of containers, also on hands-on experience. Together with our customers' production expertise, a high-performance and modern 3D-CAD design is achieved. That's why Kind + Co. is also a reliable partner for the total modernisation of tooling systems.




1 Special surface topography (WT cooling*) for highly efficient cooling of air-cooled intermediate liners.


2 Air protection (AP system**) to prevent cracks on air-cooled containers.

3 Modern 3D-CAD design of a container with integral zone heating/cooling system.

4/5 Development and modernization of customized holders and containers.

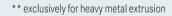
- * Registered design no. 201 17 589.4 (Germany) ** Registered design no. 203 18 917.5 (Germany) ** Registered design no. GM 874 2003 (Austria)

④ Intermediate liner ⑤ Inner liner 6 Die

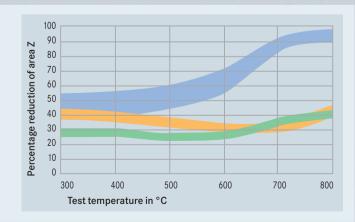
MATERIALS: ANALYSIS & PROPERTIES

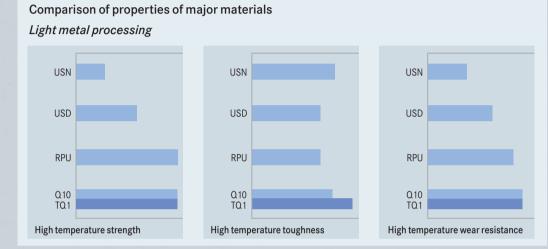
Dominial	Grade	DIN Standard	AISI	AFNOR	Reference analysis %							
					C	Cr	Мо	Ni	V	W	Со	Other
KTW	1.2311	40CrMnMo7	~P20	40CMD8	0,42	2,00	0,20	-	-	-	-	Mn 1,50
CM 167	1.2323	48CrMoV6-7	-	45CDV6	0,45	1,50	0,75	-	0,30	-	-	
USN	1.2343	X37CrMoV5-1	H 11	Z38CDV5	0,38	5,20	1,30	-	0,40	-	-	
USD	1.2344	X40CrMoV5-1	H 13	Z40CDV5	0,40	5,20	1,30	-	1,00	-	-	
RP	1.2365	32CrMoV12-28	H 10	32DCV12-28	0,32	3,00	2,80	-	0,60	-	-	
RPU	1.2367	X38CrMoV5-3	-	Z38VDV5-3	0,38	5,00	2,80	-	0,60	-	-	
Q10/TQ1*	-	-	-	-	0,36	5,20	1,90	-	0,55	-	-	
HWD**	1.2678	X45CoCrWV5-5-5	H 19	Z40KCWV05-05-05	0,40	4,50	0,50	-	2,10	4,50	4,50	
PWM	1.2714	55NiCrMoV7	~L6	~55NCDV7	0,55	1,10	0,45	1,70	0,10	-	-	
AWS**	1.2731	X50NiCrWV13-13	-	-	0,50	13,00	-	13,00	0,60	2,40	-	
MA-Rekord**	1.2758	X50WNiCrVCo12-12	-	-	0,55	4,00	0,60	11,50	1,10	12,00	1,50	
RPCo**	1.2885	X32CrMoCoV3-3-3	H 10A	-	0,32	3,00	2,80	-	0,60	-	3,00	
RM 10 Co**	1.2888	X20CoCrWMo10-9	-	-	0,20	9,50	2,00	-	-	5,50	10,00	
HMoD**	1.2889	X45CoCrMoV5-5-3	H 19A	-	0,45	4,50	3,00	-	2,00	-	4,50	
HWF**	1.2779	X6NiCrTi26-15	A286	Z6NCTDV25 15B	< 0,08	15,00	1,50	26,00	-	-	-	Ti 2,40
SA 718**	2.4668	NiCr19Fe19Nb5Mo3	UNS No 7718	NC 19FeNb	0,05	19,00	3,00	53,00	-	-	– Al 0,5	Nb 5,0 Ti 0,9
SA 50 Ni**	2.4973	NiCr19CoMo	R41	-	< 0,12	19,00	9,50	Rest Balance	-	-	11,00	Ti 3,0 Al 1,6

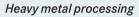
Overview of the most important materials for extrusion toolings

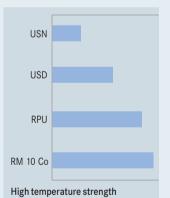

* produced using electroslag remelting (ESR)

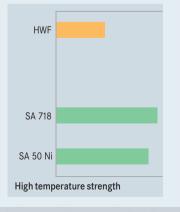
M = martensitic

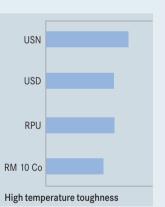

Test temperature in °C

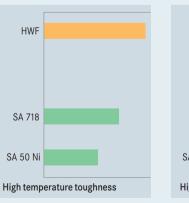

Yield point Rp_{0.2} in N/mm²

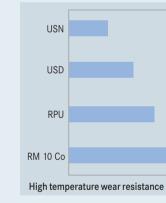


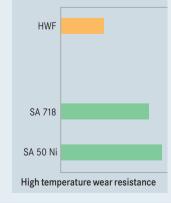


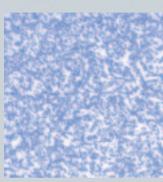

Ni = nickel based alloy

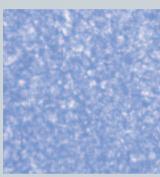


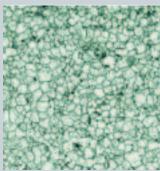











Typical annealing structure of a hot-work steel

Typical tempering structure of a hot-work steel

Typical structure of age hardened austenite

Typical structure of a nickel base alloy

MATERIALS FOR EXTRUSION TOOLINGS

Container technology		Light metal		Heavy metal		
	Load Pspec.	KIND + CO brand	Grade	KIND + CO brand	Grade	
Mantle	low	PWM KTW	1.2714 1.2311	PWM USN	1.2714 1.2343	
Mantie	high	USN USD	1.2343 1.2344	USN RPU	1.2343 1.2367	
Intermediate	low	USN USD	1.2343 1.2344	USN USD Q10	1.2343 1.2344 -	
liner	high (air cooling)	USN RPU Q10	1.2343 1.2367 -	RPU Q10	1.2367 -	
Inner liner	low (<600 N/mm²)	USN USD RP RPU Q10	1.2343 1.2344 1.2365 1.2367 -	RP RPU HWF	1.2365 1.2367 1.2779	
	high (>600 N/mm²)	USN RPU TQ1 Q10	1.2343 1.2367 - -	RM 10 Co HWF SA 718	1.2888 1.2779 1.4668	
Extrusion stem		Light metal		Heavy metal		
	Load Pspec.	KIND + CO brand	Grade	KIND + CO brand	Grade	
	low (<600 N/mm²)	USN USD	1.2343 1.2344	USN RP RPU	1.2343 1.2365 1.2367	
	high (>600 N/mm²)	USN RPU TQ1 Q10	1.2343 1.2367 - -	USN RPU TQ1 Q10	1.2343 1.2367 - -	
Tooling		Light metal		Heavy metal		
		KIND + CO brand	Grade	KIND + CO brand	Grade	
Sealing plate		USN USD RPU	1.2343 1.2344 1.2367	RP RPU SA 718	1.2365 1.2367 2.4668	
Die holder		USN RPU	1.2343 1.2367	RPU RM 10 Co SA 718	1.2367 1.2888 2.4668	
Mandrel		USN USD RPU Q10	1.2343 1.2344 1.2367 -	USN USD RP RPU	1.2343 1.2344 1.2365 1.2367	
Mandrel tip				SA 718 SA 50 Ni	2.4668 2.4973	
Dies		USN USD RPU TQ1 Q10	1.2343 1.2344 1.2367 - -	HWD AWS MA-Record HWF RM 10 Co HMoD Stellit6 / Stellit4 /	1.2678 1.2731 1.2758 1.2779 1.2888 1.2889 MHC	

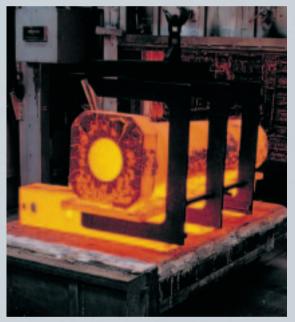
HEAT TREATMENT - THE WAY TO PROVIDE THE REQUIRED TOOL PROPERTIES

Achieving the best material properties is the key for dependability and maximum life time.

The most advanced vacuum hardening and nitriding furnaces, an integrated quality assurance system as well as experience and know-how ensure the repeat accuracy heat treatment.

Defined material properties are certificated by sampling in our own testing laboratory. Processing only takes place once the required features have been confirmed.

A modern process control system ensures continuous monitoring and documentation of the complete manufacturing process.


Special heat treatment such as partial annealing of tools (stem base/thread on the mandrel) or special surface treatments (nitriding/oxidising) complete our range of services in the field of heat treatment.

Power unit	Max. loading dimensions L x W x H mm	Max. heat weight	Max. quenching pressure
Vacuum hardening furnace	1,500 x 1,000 x 1,000 1,500 x 1,000 x 1,000 Ø 1,000 x 1,800 900 x 610 x 610	2,500 kg 2,000 kg 2,000 kg 600 kg	13 bar 6 bar 6 bar 10 bar
Nitriding furnaces	1,500 x 1,000 x 1,000 1,200 x 900 x 800 910 x 610 x 610	3,500 kg 1,500 kg 600 kg	

10

Quenching of a mantle in a polymer bath

Hardening of extrusion stem

Vertical loading for low-distortion vacuum hardening

Nitriding furnace, index controlled

Index controlled oxidising (metal oxidising / MO) of mandrels from heavy metal (4 - 6 μm)

Nitriding of aluminium dies with white layer (6 – 10 $\mu m)$ and diffusion layer (0.10 – 0.15 mm)

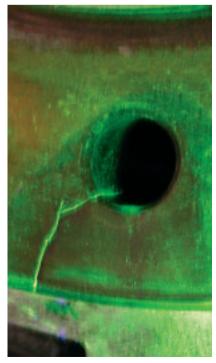
Supercooled shrinking of inner liner with double shoulders

SERVICE CHECK ON CONTAINERS

The single components of each container such as the mantle, intermediate liner or inner liner are

subject to a load situation which requires – sooner or later – replacing the liners. When carrying out this work, each container is completely inspected in order to decide on its further use or the need for any additional activities.

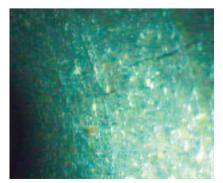
Our service team includes qualified experts who are competent in the field of metallography, quality control, machining and sales. In addition to general tests, a detailed inspection of the sensitive holes for temperature sensors and air supply using a boroscope has become an important preventive activity.


All test results and actions taken are stored in a database so that a comprehensive history of the containers can be provided and further technical developments can be worked out together with the customers. These practical experiences are the bench mark for the design of new containers and lead into enhanced tool life using detailed modifications, e.g., WT cooling or AIR protection.

RELINING/ SHRINKING

During operation, the container is subjected to strongly fluctuating mechanical and thermal loads.

Application-specific load calculations take into account the press power, the container and billet temperatures as well as shrinkage strain. It is important that the various expansion coefficients of the materials are taken into account.


Shrinking requires profound experience and extensive process technology to achieve the required parameters as well as the engineering solutions.

Inspection of critical points using the magnaflux method

Internal stability check

Boroscope diagnostics with digital recording

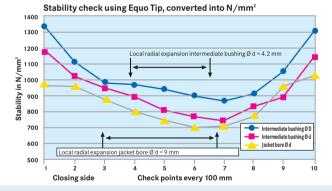
Shrinking of a cooled intermediate bushing in a preheated jacket

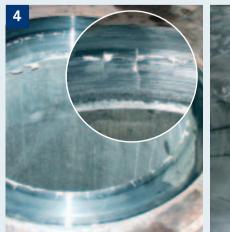
SERVICE FROM A TO Z

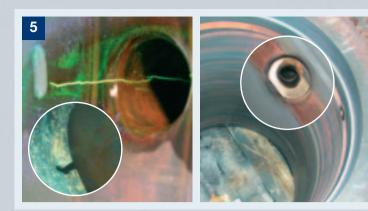
LIST OF DIAGNOSTIC RESULTS

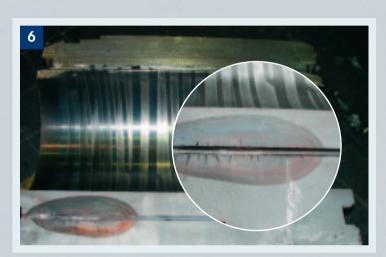

Typical failure reasons on extrusion toolings:

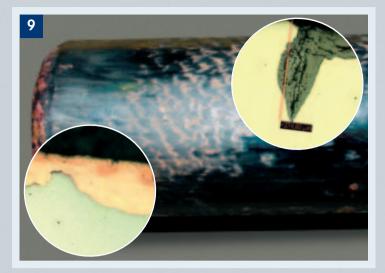
- Cracks in heating pockets can be eliminated by design changes.
- Avoidance of threaded holes in the heating 2 pockets (new development).
- Softening (diagram) and plastic deformation 3 on the container.
- Excessive surface pressure on flat sealing 4 of the inner liner - flame marks at inner liners.
- Cracks in air supply holes of cooled containers 5 are today prevented using the AP system*.
- Damaged mantle due to defective 6 resistance heating element.
- Compression of extrusion stem is prevented 7 using tough TQ1 material.
- Critical transitions on stems should be 8 mitigated by design changes and by using superior materials (TQ1/Q10).
- Contraction and the presence of scaly surface 9 on mandrels at heavy metal extrusion.
- Surface softening and lack of lubrication on 10 mandrels during extruding copper tubes.
- Multiple nitriding treatments lead to excessive 11 nitriding of the die surface (flaking).
- Plastic deformation and deflection at AL dies 12 can be reduced using tough TQ1 material.
 - Registered design no. 203 18 917.5 (Germany) Registered design no. GM 874 2003 (Austria)

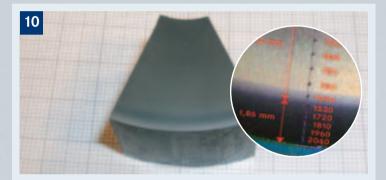


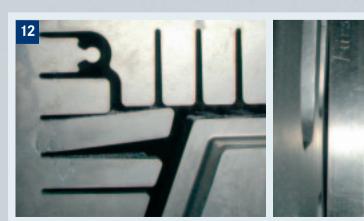












More service

Tool steels and special materials Melting Forging Ring rolling Heat treatment Machining Surface treatment

KIND & CO., Edelstahlwerk, KG Bielsteiner Str. 128-130 · D-51674 Wiehl-Bielstein Tel. +49 (0) 22 62 / 84-0 · Fax +49 (0) 22 62 / 84-175 info@kind-co.de · www.kind-co.de